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Abstract. We have reinvestigated the structural and thermodynamic properties of the square-
well and the square-shoulder system using two different theoretical frameworks, i.e., the optimized
random-phase approximation and the Rogers–Young integral equation. We discuss the limits of
applicability of the respective concepts and compare the results with ‘exact’ Monte Carlo simulation
results and with data obtained from a semi-analytic method proposed by Nezbeda for narrow
wells. Using these correlation functions, we study in the framework of the modified-weighted-
density approximation the isostructural solid–solid transition predicted for narrow wells and narrow
shoulders.

1. Introduction

In the 1970s the square-well (SW) system was considered as one of the simplest extensions
beyond hard spheres, including both attractive and repulsive forces and representing thus a
crude model for a realistic interaction. It therefore was—like the Lennard-Jones liquid—one of
the favourite testing grounds of liquid-state theoreticians where it was investigated extensively
in computer experiments or within different theoretical frameworks, such as integral equations
or perturbation theories (papers stemming from that period are summarized, for instance,
in [1, 2]). Improved numerical algorithms (along with better computer performance rates)
and more sophisticated theoretical concepts (such as parametrized closure relations for the
Ornstein–Zernike—OZ—equations; see [3]) brought realistic pair potentials (such as those of
liquid metals) into reach and hence this simple model system quickly lost its attraction. A
steadily increasing interest in colloidal fluids has brought this system back into the race, since
this model potential is able to mimic the complex interparticle interaction in such systems [4].
Further interest was excited by an isostructural solid–solid transition for the closely related
square-shoulder (SS) potential that had been predicted in computer experiments for narrow
shoulders [5,6].

Among other papers published on this system during the past few years we point
out in particular a HMSA study (i.e. an interpolation between the mean-spherical and the
hyperwetted-chain approximation) [7] and a Gibbs ensemble Monte Carlo (GEMC) study [1]
that served as reference data for the present study. In this contribution we have complemented
the HMSA study by applying the optimized random-phase approximation (ORPA), a successful
perturbation theory proposed in the 1970s by Weeks, Chandler and Andersen [8–10] and the
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Rogers–Young (RY) [11] integral equation approach, a parametrized closure relation for the
OZ equations of this system. The ORPA (and its related approximations) is a perturbation
theory where the well/shoulder is considered as a perturbation of the hard-sphere reference
system; it gives remarkably good results for intermediate and high temperatures, but is bound
to fail as the temperature decreases, as the well/shoulder is no longer a small perturbation of
the hard core. The RY integral equation, on the other hand, whose closure relation represents a
functional interpolation between the Percus–Yevick and the hypernetted-chain approximation
is of non-perturbative character and should therefore be applicable in the entire parameter space;
nevertheless, we have found in the present study that the solvability of the consistency relation
between the virial and the compressibility equation of state (which fixes the interpolation
parameter) is also restricted to a fraction of the parameter space.

In the first part of the paper we report on the results for these two frameworks to
investigate the structural and thermodynamic properties of SW/SS systems. We discuss the
limits of applicability and complement these data with standard Monte Carlo results. Further-
more, we compare our results with those obtained from a semi-analytic Percus–Yevick-based
approximation proposed by Nezbeda [12] for narrow wells. We finally discuss in detail the
isostructural fcc–fcc transition observed for narrow shoulders and wells [5, 6]. In contrast to
previous theoretical studies [13], we treat the problem in a non-perturbative way and carry out
a full mapping of the crystal solid onto an effective liquid in the framework of the modified-
weighted-density approximation (MWDA).

The paper is organized as follows. In the next section we briefly summarize the two
theoretical frameworks that are used to investigate the properties of our system, i.e., the ORPA
and the RY integral equation. In section 3 we discuss first the results for the square-well
system, including structural and thermodynamic data as well as the liquid–gas phase diagram,
and then those for the square-shoulder system, focusing there on the isostructural solid–solid
transition. The paper is closed with concluding remarks.

2. Theory

The methods used in this contribution to investigate the structural and thermodynamic
properties of a liquid are based on the Ornstein–Zernike (OZ) equation [3], which relates
the direct and the total correlations functionsc(r) andh(r) of a system via

h(r) = c(r) + ρ
∫

dr′ c(|r − r′|)h(r ′). (1)

Here,ρ is the number density of the system; moreover, the relationg(r) = h(r) + 1 defines
the radial distribution functiong(r). The static structure factorS(q) is defined through the
relation

S(q) = 1 +ρ
∫

dr exp[−iq · r]h(r). (2)

In subsections 2.2 and 2.3 we will present two different approaches that allow the determination
of the structure functionsh(r) andg(r).

2.1. The interatomic potential

The pair potential8(r) of a ‘square-well’ (SW) or ‘square-shoulder’ (SS) system is given by

β8(r) =


∞ r < σ

−ε σ < r < λσ

0 λσ < r.

(3)



Thermodynamics of square-well and square-shoulder fluids 10145

The diameterσ defines the (impenetrable) hard-core part of the interaction. In the usual
notation, a positive well depthε represents an attractive SW potential, while a negativeε

produces a repulsive SS interaction. The pair potential is furthermore characterized by the well
(or shoulder) rangeλσ . There are two dimensionless thermodynamic parameters: the ‘reduced
temperature’T ∗ = kBT /|ε| and the packing fraction of the hard cores,η = (π/6)ρσ 3. We
also introduce the dimensionless densityρ∗ = ρσ 3.

2.2. Thermodynamic perturbation theory

One of the most sophisticated present-day perturbation theories in liquid-state theory is the
optimized random-phase approximation (ORPA), which was introduced in the 1970s by Weeks,
Chandler and Andersen [8–10,14]. It is based on the following idea: the interatomic potential is
split up into a harshly repulsive reference potential and a weak, short-ranged perturbation. The
method is particularly appropriate if the reference potential is a hard-core interaction; however,
the softness of a potential can be taken into account by the Weeks–Chandler–Andersen (WCA)
approach [15] where the soft system is mapped back onto a suitable hard-core system via the
blip-function expansion.

To derive the formalism of the ORPA approach it is most convenient to split up, in a similar
way to the pair potential8(r), each correlation function into a reference and a perturbation
part, labelled by the subscripts ‘0’ and ‘1’ respectively, i.e.,c(r) = c0(r) + c1(r), etc. The
ORPA closure relation for the OZ equations is then given by

c1(r) = −β81(r) for r > σ

h1(r) = 0 for r < σ
(4)

whereσ is the hard-core diameter of the reference potential. The first equation represents the
simple random-phase approximation (RPA) which assumes that the long-range behaviour of
the direct correlation function is valid for allr-values outside the core region. As a consequence
of this simple approximation the core condition for the pair distribution function is violated,
i.e.,g(r) 6= 0 for r 6 σ . This deficiency is corrected by the second relation in equation (4).

The OZ equation along with these closure relations can now be treated with standard
numerical methods for solving integral equations. However, it can be shown that this integral
equation route is equivalent to the solution of a minimization problem, which—in some cases—
has turned out to be easier than solving the integral equations themselves. This equivalence
has been shown, for instance, by Pastoreet al [16, 17]: the solution of the integral equation
ORPA (in terms ofc(r) andh(r)) minimizes the following functional:

F [c1] = − 1

(2π)3

∫
dq {ρS0(q)c̃1(q) + ln[1− ρS0(q)c̃1(q)]} (5)

which is a functional of the perturbation part of the direct correlation functionc1(r) through
its Fourier transform̃c1(q); S0(q) is the static structure factor of the reference system.

In practice, the minimization of the functionalF is done with respect to variations of
c1(r) = −β81(r) inside the core, i.e., in a region where finite contributions to the potential do
not modify the total pair interaction. In previous implementations of the ORPA [2,18],81(r)

was expanded inside the core in terms of Legendre polynomials and the variational problem
was solved with respect to these expansion coefficients. Thanks to modern tools and to the
performance of modern computers it has now become possible to discretize81(r) inside the
core region on a grid of typically 100 points and to minimize the functionalF [c1] with respect
to these discrete function values. The appropriate numerical tool for this minimization problem
is the steepest-descent algorithm in view of the fact that the gradient of the functionalF with
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respect toc1(r) is given by the total correlation function, i.e.,
δF [c1]

δc1
(r) = ρh1(r) (6)

whereδ denotes a functional derivative (for details see again [16]).
In our case the reference system is a hard-sphere (HS) system. The relevant information

about its structural and thermodynamic properties can be obtained via two routes: either from
the analytic solution of the Percus–Yevick (PY) approximation for HS [19] or from the Verlet–
Weis (VW) parametrization [20] which reproduce results from computer experiments very
accurately. The crucial difference between these two routes is that the PYc0(r) is zero outside
the core, while the VWc0(r) does not vanish in this region. Hence, the ORPA in combination
with the PY parametrization for the reference system becomes equivalent to the mean-spherical
approximation (MSA) [3] and we will carry on using this notation, while ‘ORPA’ now means
that we use a VW parametrization for the properties of the HS reference system. This difference
will in particular be important when we discuss thermodynamic properties.

Once this minimization problem is solved and the full set of correlation functions is known
one can proceed to more sophisticated extensions of the ORPA: a closer analysis of the graph-
theoretical representation of the correlation functions shows [9] that inclusion of the next-order
graphs yields the following expression for the pair distribution function:

g(r) = g0(r) exp[h1(r)] (7)

to which we refer to as the optimized-cluster theory (OCT). In a semi-heuristic way, a modified
version of (7) has been introduced, the linearized exponential approximation (LEXP) [21],
where

g(r) = g0(r)[1 + h1(r)]. (8)

Given the structure of the system in terms of the correlation functions, the thermodynamic
properties can be calculated. The excess internal energyUex and the ‘fluctuation’ isothermal
compressibilityχfluc are obtained via standard relations, i.e.,

U ∗ = βUex

N
= −2περ

∫ λσ

σ

drr2g(r) (9)

and

ρkBT χ
fluc = S(0). (10)

The calculation of the virial pressurePvir is a more delicate task: starting from the general
expression

βPvir

ρ
= 1− 2

3
πβρ

∫ ∞
0

dr r38′(r)g(r) (11)

particular care has to be taken for discontinuities both ing(r) and in the derivative of the
interaction, i.e.,8′(r) for r = σ andr = λσ . As described in detail in reference [22], one
finds the following expression, which isexactand whose derivation rests on the continuity of
the functiony(r) = g(r) exp[β8(r)]:

P ∗vir = 1 +
2π

3
ρσ 3

{
g(σ +) + λ3

[
g(λσ +)− g(λσ−)]} . (12)

While the continuity ofy(r) is preserved in the OCT (as well as in the integral equation theories
to be discussed in the following subsection), this property is violated in the ORPA, the MSA
and the LEXP. For these theories, the pressure is given instead by theapproximaterelation [22]:

P ∗vir = 1 +
2π

3
ρσ 3

{
g(σ +)− 1

2
λ3βε

[
g(λσ +) + g(λσ−)

]}
. (13)
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One of the attractive features of the ORPA (and related approximations) is the fact that
closed expressions can be given for the free energyA, which avoids tedious thermodynamic
integrations. One finds for the ORPA and the MSA

A∗ = β

N
A = A∗0 +A∗HTA +A∗ORPA (14)

whereA∗0 is the reduced (dimensionless) free energy of the HS reference system (PY or VW
parametrization),A∗HTA is the high-temperature contribution, given by

A∗HTA = 2πρ
∫ ∞

0
dr r2β81(r)g0(r) (15)

andA∗ORPA is found to be

A∗ORPA= −
1

2ρ
F [c1]. (16)

Inclusion of higher-order terms within the OCT framework leads to the following expression
for A∗:

A∗OCT = A∗0 +A∗HTA +A∗ORPA +B∗2 (17)

with

B∗2 = −2πρ
∫ ∞
σ

dr r2

{
g0(r)

[
exp[h1(r)] − h1(r)− 1

]− 1

2
h2

1(r)

}
. (18)

Finally, the chemical potentialµ can be given as a closed relation in the MSA; for the
other approximations we have to use numerical differentiations (the Maxwell relation) or we
exploit the Gibbs–Duhem relation, i.e.,

µ∗ = A∗ + P ∗. (19)

In principle, different routes to a thermodynamic quantity should give the same results.
However, due to the approximations assumed in the derivation of a closure relation we are
confronted with the fact that the results nowdo depend on the route by which they have been
calculated. This feature, known in the literature as thermodynamic inconsistency, will be dealt
with in section 3.1.2.

2.3. Integral equations

An alternative approach to the calculation of the structural and thermodynamic properties of
classical liquids is offered by employing integral equation theories (IETs). Unlike the ORPA,
such theories arenon-perturbativein character, i.e., they do not rely on any separation of the pair
potential into a reference and a perturbation, but rather they treat the whole pair interaction on
an equal footing. An obvious advantage of IETs compared with the ORPA is that, in principle,
they remain valid atall temperatures whereas the ORPA closure (equation (4)) yields invariably
a diverging direct correlation function forr > σ atT = 0.

The starting point of any approximate integral equation theory is theexactrelation con-
necting the radial distribution functiong(r) to the direct correlation functionc(r) and involving
the bridge functionB(r):

g(r) = exp{−β8(r) + g(r)− 1− c(r)− B(r)} (20)

whereB(r) stands for the sum of all elementary diagrams that are not nodal [3]. AsB(r) is not
known, the various approximate IETs can be regarded as approximations of this quantity. In
this way, an additional closure involving onlyg(r) andc(r) is supplemented to the Ornstein–
Zernike relation (equation (1)) and the system becomes, in principle, solvable.
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The simplest and most frequently used IETs are the hypernetted-chain (HNC) and the
Percus–Yevick (PY) closure. In the HNC one simply setsB(r) = 0, obtaining the closure

g(r) = exp{−β8(r) + g(r)− 1− c(r)}. (21)

On the other hand, the PY closure can be regarded as a linearization of the HNC scheme
regarding the termg(r)− 1− c(r) in the exponential and reads as

g(r) = exp{−β8(r)}[g(r)− c(r)] (22)

corresponding to the following approximation for the bridge function:

BPY(r) = [g(r)− c(r)] − 1− ln[g(r)− c(r)]. (23)

Both the HNC and the PY closures, being approximate in character, lead to the problem
of thermodynamic inconsistency mentioned above. In order to overcome this difficulty, more
sophisticated schemes have been proposed that have the freedom of one or more adjustable
parameters which are then chosen in such a way that thermodynamic consistency is achieved.
Among the most popular approaches are the modified HNC (MHNC) of Rosenfeld and
Ashcroft [23], the HMSA of Bergenholtzet al [7] and the Rogers–Young (RY) closure [11].
In the latter, one replaces the exact relation (20) above with the closure

g(r) = exp{−β8(r)}
[

1 +
exp{γ (r)f (r)} − 1

f (r)

]
(24)

whereγ (r) = g(r) − c(r) − 1 andf (r) is a ‘mixing function’ involving a parameterα and
taken to have the form

f (r) = 1− exp(−αr). (25)

It is straightforward to verify that forα = 0 the RY closure reduces to PY and forα →∞ it
reduces to the HNC. The parameterα is chosen in such a way that thermodynamic consistency
between the ‘virial’ and the ‘compressibility’ routes to the pressure of the system is achieved.

The Rogers–Young closure has been proven to be very accurate for a number of model
systems with variable pair interactions, ranging from hard spheres and inverse-power potentials
[11] to ultrasoft logarithmic interactions [24]. Here we want to check the validity of the
RY closure for square-well and square-shoulder potentials and check, in particular, how the
existence of an attractive part in the potential affects the quality of the RY results. In table 1
(below) and table 3 (see later) we present a summary of the thermodynamic parameters for
which we carried out the RY closure.

Table 1. The combination of thermodynamic parameters for which the Rogers–Young and the
ORPA closures were solved, for the square-well fluid.

λ T ∗ ρ∗

1.50 1.0 0.80
1.03 1.0 0.80
1.03 0.5 0.80

2.4. The Nezbeda solution

It should also be noted that Nezbeda [12] has derived an approximate analytic solution for
the direct correlation function within the PY approximation. The Nezbeda approximation is
valid for short-range wells or shoulders, typicallyλ 6 1.05 only; its advantage is that all the
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parameters that enter the expressions for the correlation functions can be given analytically as
functions of density and temperature; for a summary see reference [25]. Hence, for short-range
potentials we are also going to present results from the Nezbeda approximation in order to
provide a comparison.

2.5. Simulations

Finally, in order to assess the quality of all of the approximations mentioned above, we have
also carried out standard Monte Carlo simulations [26] in the constant-NVT ensemble. All
runs were performed in a cubic box containing 500 particles and using periodic boundary
conditions. We calculate the radial distribution functiong(r) and the structure factorS(q) ‘on
the fly’.

3. Results

3.1. ‘Square-well’ systems

3.1.1. Structure. Here, we will only present results for the pair distribution functiong(r). The
combination of thermodynamic parameters for which the ORPA and Rogers–Young closures
were solved are shown in table 1. We begin with a square-well fluid having a width parameter
λ = 1.5. In figure 1 we show results forg(r) at reduced temperatureT ∗ = 1. As can be
seen in figure 1(a), the ORPA yields results which are in good agreement with simulation and
actually superior to the OCT approximation.

The situation with the RY closure is completely different: at densityρ∗ = 0.8, there is
no thermodynamically self-consistent solution to this closure. This failure was also observed
earlier in a different, albeit similar closure, for the same system, by Bergenholtzet al [7]. The
reason for the lack of existence of a solution is the following: the RY closure is a mixture of
the Percus–Yevick (PY) and the hypernetted-chain (HNC) closures. In a case where it works
(e.g., hard spheres) the difference between the ‘fluctuation’ and the ‘virial’ compressibilities,
χfluc = βS(0)/ρ andχvir = [ρ ∂P/∂ρ]−1, has two different signs in these two different
closures. In particular, the PY closure typically predictstoo low pressures, with the result
that the virial compressibility is too high and the quantityχfluc − χvir is negative. On the
other hand, the HNC predicts too high pressures and the quantityχfluc−χvir is positive. With
reference to figures 1(a) and 1(b), we now see that the major ‘jump’ ing(r) (atr = σ ), whose
magnitude gives the dominant contribution to the virial pressure, turns out to behigher than
the simulation result inboththe PY and the HNC closures. Hence, both yield a positive value
for the differenceχfluc−χvir and a solution of the RY closure does not exist. This is the same
mechanism that brings about the failure of the HMSA closure of Bergenholtzet al [7].

The self-consistency parameterα of the RY closure cannot attain negative values, as is clear
from equation (25). We can, therefore, trace out the domain in thermodynamic space where
the RY closure fails, by keeping track of the value ofα as a function of density and temperature
and working out the locus of points whereα = 0. In figure 2 we show the parameterα as
a function of inverse temperature for theλ = 1.5 square-well fluid for a number of reduced
densities. It can be seen that with decreasing temperature the mixing parameter decreases for
all values of the reduced density. Beyond the point whereα = 0, a solution of the RY closure
is no longer feasible. In figure 3 the locus of pointsα = 0 in conjunction with the fluid part of
the phase diagram of the system, as calculated within the ORPA, is shown. The region below
the broken line is the region where the RY closure has no solution.

For narrow-square-well systems,λ = 1.03, the solution of the RY closure is
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Figure 1. (a) The pair distribution function forλ = 1.5, ρ∗ = 0.8, T ∗ = 1 for the square-well
potential. ORPA/OCT and simulation results. (b) The same as (a) but for Percus–Yevick and
hypernetted-chain results.

unproblematic. In figure 4 we show results forg(r) at two different temperatures,T ∗ = 1.0
and 0.5, where it can be seen that the Nezbeda and RY solutions run very close to each other.
The simulation result is practically indistinguishable for the RY result and is thus not shown,
in order not to overcrowd the figure. The ORPA and OCT approximations, however, predict
too low and too high values forg(r) in the narrow well, respectively. We conclude that the
RY closure develops problems when the range of the attractive potential grows, but for narrow
wells it still yields results which are the most reliable ones.
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Figure 2. The mixing parameterα (see equation (25)) of the Rogers–Young closure for theλ = 1.5
square-well fluid as a function of inverse reduced temperature and for a number of different densities.
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ρ*
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0.5
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2.5

ln
(Τ

∗ )

λ=1.5, binodal
λ=1.5, spinodal
RY−boundary

Figure 3. The fluid part of the phase diagram of theλ = 1.5 square-well fluid as calculated within
the ORPA and the locus of points where the RY closure hasα = 0 (RY boundary). Above this
boundaryα > 0 and the RY closure has a solution, but below a solution is not possible.

3.1.2. Thermodynamic properties.We have examined the thermodynamic properties for the
square-well potential for a number of parameters, shown, together with the results, in table 2.
The calculation was carried out using the ORPA and OCT approximations. In figure 5(a)
we plot the results for the pressure, obtained via the virial and the energy route within the
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Figure 4. The pair distribution function for theλ = 1.03 square-well system at reduced den-
sity ρ∗ = 0.8. Comparison between the ORPA/OCT, Rogers–Young and Nezbeda solutions;
(a)T ∗ = 1.0; (b)T ∗ = 0.5.

OCT for a SW system of rangeλ = 1.5 and three different temperaturesT ∗; the error bars
indicate the difference between the two pressure values and hence the degree of thermodynamic
inconsistency. Figure 5(b) presents similar results for the compressibilityχT , obtained via the
fluctuation and the compressibility route for a SS system with a range ofλ = 1.2. We
observe that the thermodynamic self-consistency gets worse as the temperature decreases. In
table 2 we present results for three special choices of systems parameters: remarkable is the
total failure (with an error of≈200%) for the pressure self-consistency of theλ = 1.03 and
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Table 2. Thermodynamic properties for various square-well liquids at reduced densityρ∗ = 0.8.
P ∗vir andP ∗e denote the pressure calculated by the virial (equation (12)) and energy routes;U∗ and
U∗e are the excess internal energy per particle calculated by the virial (equation (9)) and energy
routes;χfluc andχvir denote the ‘fluctuation’ and ‘virial’ isothermal compressibilities, respectively.
(a) ORPA results; (b) OCT results.

λ T ∗ P ∗vir P ∗e U∗ U∗e χfluc χvir

(a)
1.50 1.0 3.158 2.581−3.1179 −3.1140 0.0715 0.0505
1.03 1.0 2.225 6.158 0.5343 0.5371 0.0504 0.1827
1.03 0.5 −4.397† 4.498 −0.0945 −0.0833 0.0557−0.0846

(b)
1.50 1.0 2.267 2.868−2.9802 −3.0696 0.0715 0.0505
1.03 1.0 6.705 5.693 0.1601 0.2121 0.0504 0.0524
1.03 0.5 5.513 2.208−2.6909 −2.3028 0.0557 0.0589

† For the virial pressure of the ORPA we use equation (13) instead of (12).

T ∗ = 0.5 system. Using the double-tangent construction we have finally calculated the liquid–
gas phase diagram of SW systems for different values of well rangeλ. We have compared
our results with the GEMC data of [1] and observe that the critical data differ by up to 5%,
which is not surprising since it is well known [27] that conventional liquid-state theories are
not appropriate for giving quantitative predictions of the critical data. Below the critical point
the phase separation curves are in good agreement with simulation data.

3.2. ‘Square-shoulder’ systems

3.2.1. Structure. The combinations of thermodynamic parameters for which we solved the
ORPA and RY closures for the square-shoulder systems are summarized in table 3. Results
for g(r) for two different values ofλ (λ = 1.5 and 1.2) and at two different temperatures are
shown in figures 6 and 7. It can now be seen that the RY closure delivers results which
are in perfect agreement with simulation. We have further explored the thermodynamic

Table 3. The combination of thermodynamic parameters for which the Rogers–Young closure was
solved, for the square-shoulder fluid.

λ T ∗ η

1.50 1.0 0.10
0.25
0.40

0.5 0.10
0.25
0.40

1.20 1.0 0.10
0.25
0.40

0.5 0.10
0.25
0.40
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Figure 5. (a) The reduced dimensionless pressureP ∗ calculated for a SW system of rangeλ = 1.5
for three different temperaturesT ∗ as indicated, calculated via the virial and the energy route. The
lines indicate the average of the values for the two routes and the error bars the difference between
these two values. (b) The reduced isothermal compressibilityχ/χid (χid = β/ρ) calculated for
a SS system of rangeλ = 1.2 for three different temperaturesT ∗ as indicated, calculated via the
compressibility and the virial route. The lines denote the average of the values for the two routes
and the error bars the difference between these two values.

space and we were always able to find a self-consistent solution to the RY closure. We
conclude, therefore, thatfor purely repulsive potentialsthe RY closure is problem free and,
in addition, yields results of excellent quality, when a comparison with the simulation is
made.
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Figure 6. (a) The pair distribution function for theλ = 1.5 square-shoulder fluid at packing
fractionη = 0.4. Comparison between the ORPA/OCT, Rogers–Young and simulation approaches;
(a) T ∗ = 1.0; (b) T ∗ = 0.5. Note that the RY results are practically indistinguishable from the
Monte Carlo data.

The ORPA and OCT approximations, on the other hand, do not yield satisfactory
agreement with simulation. In one case,λ = 1.5, T ∗ = 0.5 andη = 0.4, the ORPA
even predicts a region whereg(r) is negative (see figure 6(b)), a clear physical impossibility.
The reason for this failure can be traced back to the perturbative nature of the ORPA. Indeed,
from the defining equations for the ORPA (see equation (4)) it is clear that the latter is a
high-temperature approximation which is bound to fail at sufficiently low temperatures as the
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Figure 7. As figure 6, but forλ = 1.2.

quantity−β81(r) will tend to minus infinity for the case of the square-shoulder potential.
In figures 8 and 9 we delineate the region in the density–temperature plane where the ORPA
develops negative parts for the functiong(r) in the case of square-shoulder systems with
λ = 1.5 and 1.2, respectively.

3.2.2. Thermodynamic properties.In the square-shoulder system, the absence of attractive
parts in the interaction potential means that there existsonly onefluid phase, i.e., there is
no liquid–gas separation. However, for narrow shoulders there appears in the solid region
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Figure 8. The region of failure of the ORPA (see the text), for the square-shoulder potential, with
λ = 1.5. The region is denoted by the dots.
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Figure 9. As figure 8, but forλ = 1.2.

of the phase diagram a new type of phase coexistence, namely anisostructuralfcc–fcc phase
transition, terminating in a critical point. This transition was discovered in simulational work by
Bolhuis and Frenkel and it exists both for narrow-square-shoulder systems [5] and for narrow-
square-well systems [6]. This isostructural transition was studied recently in the framework of
density functional theory by Denton and Löwen [13]. Thereby, a perturbative approach was
employed, where the interaction potential was separated into a reference, hard-sphere part and
a perturbation. The free energy of the inhomogeneous (crystalline) system was calculated by
employing the modified-weighted-density approximation (MWDA) [28] for the reference part
and a mean-field-type approach for the perturbation. The results obtained using this approach
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were in good agreement with simulation [13].
Here, we would like to treat the problem in anon-perturbativefashion, i.e., without

separation of the interaction potential into a reference and a perturbation part, and carry out a
full mapping of the crystalline solid onto an effective liquid in the framework of the MWDA.
This approach has already been carried out for the case of square-well potentials [25]. The
system at hand presents no possible complications with the mapping, as there exists only one
stable fluid phase.

The MWDA amounts to an approximation of the excess free energyβFex of the solid
having packing fractionηs through the excess free energy of aneffectiveliquid having a
packing fractionη̂, i.e.:

βFex[ρ]σ 3

V
= ηs f (η̂)

η̂
(26)

wheref (η) isσ 3 times the excess free energy per unit volume of the uniform fluid. Withρ(r)

being the spatially modulated one-particle density of the crystal, the self-consistency condition
that determines the weighted packing fractionη̂ in terms ofρ(r) readsin real spaceas [25]

η̂ = ηs
[

1 +
18η̂2 c̃(k = 0; η̂)
π2(η̂f ′(η̂)− f (η̂))

]

− 6η̂2

π(η̂f ′(η̂)− f (η̂))

(
1

2N

∫ ∫
ρ(r)ρ(r′)c(|r − r′|; η̂) dr dr′

)
. (27)

In equation (27) above,̃c(k; η) is σ 3 times the Fourier transform of the direct correlation
function of a liquid at packing fractionη, the prime onf denotes a derivative with respect to
η andN is the number of particles in the system.

We have performed the MWDA iteration using, at first, the Nezbeda solution forc(r; η)
as input for the liquid. The result is a serious overestimation of the critical temperature for
the isostructural transition. We obtain, for 1.04 6 λ 6 1.08, T ∗c ≈ 6, in disagreement with
the result from simulations [5],T ∗c ≈ 1.5. On the other hand, if we use the ORPA result for
c(r; η) as input, then the critical temperature turns out to be between 0.9 and 1.3, in much
better agreement with simulation. The ORPA phase diagram is displayed in figure 10.

This extreme sensitivity ofT ∗c to the liquid-state input requires some explanation. The
basic idea behind the MWDA is that the effective liquid whose excess free energy equals that of
the solid has a packing fraction̂η which is much lower thatηs . Indeed, the solid, being highly
inhomogeneous, pays a high price in ideal free energy, which disfavours spatial modulations,
and a relatively low price in excess free energy. In other words, the MWDA is self-consistent,
if the value of the effective packing fraction̂η that corresponds to a strongly modulated solid is
low. Referring to equation (27) above, we observe the following: the contribution of the second
term on the rhs consists of sums over shells in real space, the zeroth shell being included. The
contributions from the non-zero shells (i.e., first, second etc neighbours of a given site) are
practicallyvanishingif the Nezbeda solution forc(r; η) is used, as in the approximationc(r; η)
is identically zero forr > λσ . In reality, however, the functionc(r; η) has a ‘tail’ in the region
r > λσ , where it attains positive values. This tail is reproduced in both the ORPA and the RY
solution; see figure 11. As the tail is positive,ρ(r) is also positive and so is the coefficient of
the double integral on the rhs of equation (27); it turns out that if the Nezbeda solution is used,
certain negative contributions to the determination ofη̂ are left out. This yields an effective
packing fractionη̂ which is too high. Indeed, forλ = 1.05 andT ∗ = 1.0, we find, typically,
0.40< η̂ < 0.55 in the region of fcc–fcc coexistence. For such high values ofη, the validity
of the PY approximation (inherent in the Nezbeda solution) is questionable. Moreover, the
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Figure 10. The phase diagram of square-shoulder liquids for various different values ofλ. The
phase boundaries were obtained using the MWDA and the ORPA solution for the liquid state of
the system.
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Figure 11. Comparison of the Nezbeda, ORPA and RY direct correlation functions of aλ = 1.03
square-shoulder liquid at packing fractionη = 0.35 and temperatureT ∗ = 1.0. For clarity, only
the region outside the hard core is displayed.

excess free energy of the solid turns out to be artificially high. And as the critical temperature
is very sensitive to the details of the free energy, this causes a too high critical temperature for
the fcc–fcc transition.

This problem wasnot observed in the case of the fcc–fcc coexistence of the square-well
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system because there the highlypositivevalue ofc(r; η) in the regionσ < r < λσ brings
aboutvery lowvalues ofη̂, irrespective of the tail of the direct correlation function outside
r = λσ . In the present case, wherec(r; η) is negative everywhere but forr > λσ , taking
into account the existence of the tail turns out to be very important. On a more quantitative
basis, the non-perturbative approach yields critical temperatures which are even lower than
the simulation results [5]. Indeed, in the simulation the critical temperature has the value
T ∗c ≈ 1.5 and is practically independent of the width of the potential. Our results, however,
show a dependence on the width of the repulsive shoulder which is also absent in the previous
perturbative approach [13]. This is the same effect as was observed in the non-perturbative
approach to the fcc–fcc transition of thesquare-wellpotential [25].

4. Conclusions

In conclusion we have discussed the thermodynamics, structure and phase transitions in square-
shoulder and square-well systems using different variants of approximative theories such as
ORPA and Rogers–Young closures and ‘exact’ computer simulations. Within the modified-
weighted-density approximation we have predicted isostructural solid–solid transitions with
the full liquid input, i.e., avoiding a perturbative density functional approach.

We finish with a couple of remarks: first it would be interesting to include polydispersity in
the model potential in order to describe real colloidal samples appropriately. In our case, three
different kinds of polydispersity are relevant: size polydispersity affecting the core diameter
σ of the colloidal particles, as well as polydispersity in the rangeλ and in the depth/heightε
of the interaction. The Rogers–Young closure [29] and other theories [30,31] can be suitably
generalized to treat polydispersity. It is clear that polydispersity will considerably affect the
existence and the actual location of the solid–solid critical point of the isostructural transition.
Second, even more complicated model potentials exhibiting further barriers following the
attractive part [32] promise unusual structural correlations and a rich phase transition scenario
with both gas–liquid and solid–solid critical points and more ‘exotic’ solid phases such as
one-component quasicrystals [33]. It would be interesting to apply our approximative scheme
to such potentials. Work along these lines is in progress.
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This work was supported by thëOsterreichische Forschungsfond under Project Nos
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